フリーランスのためのネットビジネス専門学校 ネットで独立開業を目指す人を応援
フリーランスのためのネットビジネス専門学校 ネットで独立開業を目指す人を応援

魔法の数式スパースモデリングとディープラーニングが切り開く未来とひらめきの謎 前編

去年、最も面白いと思った話題に「スパースモデリング」というものがある。
「スパースモデリング」は魔法の数式と呼ばれていて、どうしてそうなるのかは分からないけれど、「スパースモデリング」で計算するとあら不思議、少ない(欠落した)データから全体像が浮かび上がる、というもの。

知っている人は知っていると思うけれど、これは2015年の8月29日に放映された「サイエンスZERO『情報科学の名探偵!魔法の数式・スパースモデリング』」で一躍有名になったもの。

スパースモデリング
スパースモデリング

スパースモデリング2

まだ見てない人は消される前に一度見て欲しい。かなり興味深い。

で、番組では、とても検査に時間が掛かるMRIによるスキャニングを高速短時間化したり、数の限られた電波望遠鏡で部分的に観測したブラックホールの全体像を推測したり、津波堆積物の組成成分を分析している様子が紹介される。

ブラックホール1

ブラックホール2

ブラックホール3

ブラックホール4

ブラックホール5

 

mri02

mri01

「スパースモデリング」の数式はかなり高度なので素人ではさっぱり分からないが、文章でかいつまんで説明するとこうなる。

1.現象は説明により単純化できる
2.単純化した説明で現象は再現できる

例えば、小説は現象を文章により単純化しているよね。しかし、単純な説明でも読者は脳内で想像を膨らませることができるようなもの。これがもし、説明に何百点にも及ぶ写真や動画、音声、地図といったデータが加わるとどうなるか?
読者はその資料を処理しきれずにギブアップしてしまうだろう。情報が多いほど精度は高くなるが、ノイズが多くなるというデメリットがある。

例えば、迷子の人間が等倍の街をそのまま渡されても余計に迷ってしまう、ということに似ている。
地図を読めない人間が等身大の地図を手にしても解決しない。むしろ、単純で主観的な簡略化された落書きのような地図の方が分かりやすいんだよね。

つまり、高次元データの説明変数は、次元数が少ない、ということになる。
これは三次元のリンゴを二次元の写真や絵画にした方が分かりやすいことに似ている。
さらに絵にしなくても、「これはリンゴです」と言葉で説明ができるし、「リンゴを半分に切った」と書けば実際には切らなくても半分であることが説明できる。単純化した方が高次元データは扱いやすいわけだ。

では「スパースモデリング」の使い方なんだけれど、具体的な例がないので難しいが、例えば連立一次方程式を解くことを考えてみる。

会員限定コンテンツ

この記事はブロックされています。続きを読みたい方はログインをして下さい。会員ではない方は新規会員登録をして下さい。

ログインはこちら

新規会員登録はこちら

パスワードをメールで送信します。

コメント

  1. 2018/07/11(水) 13:02:15
    【コンピュータ】ベスト10 スパースモデリングって何だ? データ構造を解き明かす先端技法 https://t.co/v1A5ZQYYFL #omni7 #7net
  2. 2018/07/11(水) 23:49:38
    εδも勉強したいし、というか解析やりたいし、 途中で保留しているDLもやりたいし、せっかくデータベース使っていいとのお許しをもらったので実際に何かつくりたいし、 データマイニングも統計も勉強したいしはじぱたもやりたいし、スパースモデリングの勉強したい。
  3. 2018/07/12(木) 19:24:35
    "少ないデータから法則性を発見するアルゴリズム「スパースモデリング」という情報抽出技術を用いた独自のAIを手掛ける。大量のデータから階層的に特徴を学習するディープラーニングと異なり、特定のデータに着目することで少ないデータでも正確に分析できる。" 本当なら凄いね。
  4. 2018/07/13(金) 16:20:46
    εδも勉強したいし、というか解析やりたいし、 途中で保留しているDLもやりたいし、せっかくデータベース使っていいとのお許しをもらったので実際に何かつくりたいし、 データマイニングも統計も勉強したいしはじぱたもやりたいし、スパースモデリングの勉強したい。
  5. 2018/07/14(土) 13:28:00
    モデリング(構造式の定義)ができれば、少量データでも重要な要素検出ができる(スパースモデリング)。大量データがあれば、モデリングを諦めて深層学習で重要な要素検出ができる。という雰囲気まで把握した。 https://t.co/MZVIoDvWG1

記事に戻る

コメントを残す